
Giancarlo Ferrari-Trecate
DIS, Università degli Studi di Pavia

Via Ferrata 1, 27100 Pavia, Italy
giancarlo.ferrari@unipv.it

1 Introduction

The Hybrid Identification Toolbox (HIT) is a free MatLab toolbox for regression with PieceWise
Affine (PWA) maps and identification of PieceWise AutoRegressive eXogenous (PWARX) models.
A key feature of HIT is the capability of reconstructing discontinuous models. HIT implements the
clustering-based algorithms described in the papers [4, 3, 2, 5]. In addition, HIT provides facilities
for plotting and validating the identified models.

2 Installation

HIT uses routines of the MPT toolbox [9] for handling polytopes and solving Linear Programming
(LP) and Quadratic Programming (QP) problems.

The latest version of HIT can be downloaded at the webpage

http://www-rocq.inria.fr/who/Giancarlo.Ferrari-Trecate/HIT toolbox.html

For installing it, decompress the .zip file in a directory and add its path (and the path of the
subdirectories) to the matlabpath.

HIT is also shipped as part of MPT and it is automatically installed with a release of MPT
grater than 2.5. The latest version of the MPT toolbox is available at the webpage

http://control.ee.ethz.ch/∼mpt/

The HIT toolbox consists of the following directories
/hit main functions
/hit/analysis functions for validating models
/hit/auxiliary auxiliary functions
/hit/clustering clustering algorithms
/hit/docs pdf and html documentation
/hit/examples examples demonstrating the functionalities of HIT
/hit/pattern rec pattern recognition algorithms
/hit/plotting plotting functions

For familiarizing quickly with HIT, examples of the most typical identification experiments are
supplied in the directory /hit/examples. These .m files can also be used as templates for your
personal experiments.

1

3 An introduction to hybrid identification

The aim of this section is to provide a concise overview on hybrid identification and to introduce
the jargon used in HIT. The basic problem solved by HIT is the reconstruction of a Piece-Wise
Affine (PWA) map from a finite number of noisy data points. A PWA map f : X 7→ R is defined
by the equations

f(x) = fi(x) if λ(x) = i (1)

fi(x) =
[

xT 1
]

θi (2)

together with a bounded polyhedron X ⊂ R
n {Xi}

s
i=1 and a polyhedral partition {Xi}

s
i=1 of X in

s regions1. The map λ(x) is the switching function defined as λ(x) = i ⇔ x ∈ Xi, the vectors
θq ∈ R

n+1 are Parameter Vectors (PVs) and X is termed the regressor set. Therefore, a PWA map
is composed of s affine modes defined by the pairs (θi,Xi).

The dataset N collects the samples (x(k), y(k)), k = 1, . . . , N generated by the model

y(k) = f(x(k)) + η(k) (3)

where η(k) are noise samples corrupting the measurements, x(k) are called regressors and y(k) are
termed output samples.

Assume that all modes are represented in the data. The aim of PWA regression is to estimate s,
the PVs and the regions by using the information provided by N . Note that usually the regressor
set is known since it can be deduced from physical bounds on the regressors or it can be set equal
to the smallest hyperrectangle containing all regressors.

When considering hybrid systems, an input/output description of a PWA system with inputs
u(k) ∈ R

m and outputs y(k) ∈ R is provided by PieceWise ARX (PWARX) models that are defined
by equation (3) where k is now the time index and the vector of regressors x(k) is given by

x(k) =
[

y(k − 1) y(k − 2) . . . y(k − na) uT (k − 1) uT (k − 2) . . . uT (k − nb)
]T

. (4)

It is apparent that, if the orders na and nb are known, the identification of a PWARX model
amounts to a PWA regression problem.

3.1 Clustering-based algorithms

The basic tasks that most procedures for hybrid identification perform are (not necessarily in this
order):

a. The estimation of the switching sequence λ(x(k)) and the construction of the mode data sets
Fi = {(x(k), y(k)) : λ(x(k)) = i};

b. The estimation of the PVs θi, i = 1, . . . , s;

c. The reconstruction of the regions Xi.

1Each set Xi is a (not necessarily closed) convex polyhedron s.t. Xi

T

Xj = ∅, ∀i 6= j,
Ss

i=1
Xi = X .

2

In particular, step (a) amounts to classify the data, i.e. assign each data point to the mode that
most likely generated it.

The driving idea of clustering-based procedures is that PWA maps are locally linear. Then, if
the local models around two data points are similar, it is likely that the data points belong to the
same mode. More in details, clustering-based methods are structured in the following steps:

1. Associate to each data point a local affine model;

2. Aggregate local models with similar features into clusters;

3. Classify in the same way data points corresponding to local models in the same cluster;

4. Estimate the PVs and the regions.

Step 1. For j = 1, . . . , N , we build a Local Dataset (LD) Cj collecting (x(j), y(j)) and its c − 1
neighboring data points. Examples of LDs are reported in Fig. 1(a). The cardinality c of an LD is
a parameter of the algorithm, and it is assumed that c ≥ n + 1. For each LD Cj , compute a vector
ξj representing the features of a local affine model built using only the data in Cj . Possible choices
are

� ξj is the Local Parameter Vector (LPV) obtained by fitting an affine model on the LD Cj

through least squares [3]

� ξj is a Feature Vector (FV) collecting the LPV associated to Cj and a measure of the spatial
localization of the local model [4];

As discussed in [4, 8], FVs are crucial for reconstructing modes having virtual intersections or
characterized by the the same PVs but associated to distinct regions. In both cases, we associate
to ξj also a matrix and a scalar related to quality of the local model. LPVs for the example in Fig.
1(a) are represented in Fig. 1(b).

We refer to Cj as a pure LD if it collects only data points associated to a single mode (and we
say that Cj is associated to this mode). Otherwise the LD is termed mixed, see Fig. 1(a).

Intuitively, a pure ξ-point (i.e. associated to pure LDs) carries information about one of the modes
composing the system while mixed ξ-point provide spurious information about the true modes.
Clustering-based algorithms are expected to be effective if the ratio between pure and mixed ξ-
points is sufficiently high and if pure ξ-points provide an accurate enough representation of the
PVs. Since the bigger c, the bigger number of mixed ξ-points, one would like to keep c as low as
possible. On the other hand, one would like to increase c in order to counteract the effect of noise
on the accuracy of local model. A good tuning of c always results from this trade-off. Fro more
details, we defer the reader to [4].

�

Step 2. The goal is to find s dense clusters {Di}
s
i=1 together with their centers {µi}

s
i=1 that

partition the set of all ξ-points. This is usually done via clustering algorithms exploiting either
the matrix- or scalar-valued quality measures computed in step 1. Two alternatives are possible:
supervised clustering methods (like Kmeans), that need s as input, or unsupervised clustering
methods (like single-linkage) that do not require the knowledge of s but need other parameters

3

(a) Data points and examples of pure and mixed
LDs. Vertical lines mark the data point associated
to each LDs.

(b) ξ-points representing LPVs

(c) Clusters of ξ-points. (d) Mode data sets.

Figure 1: Data-based reconstruction of a PWA map with three modes.

that influence the number of clusters [6]. An example of clusters is represented in Fig. 1(c). Some
clustering procedures perform the detection of outliers (that are likely to be mixed ξ-points) that
will be not attributed to clusters. For this reason, in the sequel we will call inliers ξ-points that
are attributed to clusters. As it will be clear in step 4, just clusters that contain a sufficiently high
number of ξ-points can be used for estimating the modes. Then, if a cluster contains few points,
it is discarded and its ξ-points are marked as outliers. This operation also reduce the number of
modes s.

�

Step 3. Since each cluster is expected to collect all local models with similar features, data points
are classified according to the rule λ(x(j)) = i ⇔ ξj ∈ Di, for all inliers ξj . Mode data sets are built
accordingly. Note that data point corresponding to outliers are not classified and hence ignored in
the next steps. The mode dataset for the example in Fig. 1(a) are plot in Fig. 1(d).

�

4

Figure 2: Identified PWA map from the data in Fig. 1(a).

Step 4. Conceptually, this is the easiest step. The data points in each set Fi can be used for
estimating the PVs of each submodel through weighted least squares exploiting the scalar quality
measures computed in step 1. It is apparent that Fi must contain at least min{α(n + 1), c} data
points in order to estimate a PV, where α ∈ N, α ≥ 1 is a discarding factor that must be supplied
by the user. Indeed, a violation of this bound means either that there are too few data points,
compared to the number of scalar parameters composing a PV, or that no pure LD is associated
to the mode. In a noiseless setting, α = 1 would be enough for estimating PVs, but when noise is
present, one wants to use more than a single data point for each scalar parameter, and hence α > 1
is more appropriate

Since the cardinalities of Fi and Di do coincide, only clusters with more than min{α(n + 1), c}
ξ-points are retained in step 2.

Also the regions {Xi}
s
i=1 can be found on the basis of the mode data sets by resorting to

pattern recognition algorithms. At this stage, it suffices to recall the basic problem solved by these
algorithms. Since all the sets Xi are polyhedral, for each pair (Xi, Xj), with i 6= j, a separating
hyperplane exists, described by the equation M ′

ijx = mij and leading to M ′

ijx ≤ mij , if x ∈ Xi,

and to M ′

ijx > mij , if x ∈ Xj . Let F̄i = {x(k) : λ(x(k)) = i}. The vector Mij and the constant

mij can be estimated by finding an hyperplane that separates the regressors in F̄i from those in
F̄j . In the case of perfect classification (i.e. the switching sequence is reconstructed without errors)
and when data are generated by (3), it is guaranteed that the sets F̄i and F̄j , i 6= j are linearly
separable i.e. separable by an hyperplane. In presence of classification errors, pattern recognition
algorithms usually look for the separating hyperplanes that minimizes some performance measure
related to the number of misclassified points. The final results obtained from the data in Fig. 1(a)
are represented in Fig. 2.

�

The previous steps can be complemented by an optional post-processing articulated into two
sub-steps. The first one is to detect, among inliers, ξ-points that are suspected to be mixed. Inspired
by the theory developed in [5], a point ξj ∈ Fi is suspected to be mixed if Cj is not contained in Fi

(i.e. the local dataset does not belong completely to the reconstructed mode data set). The second

5

sub-step is to re-classify suspected points and outliers, that is to attribute them to the most likely
mode of operation. After re-attribution, mode data sets with less than min{α(n + 1), c} points are
discarded, s is updated accordingly and step 4 is performed again.

4 Learning HIT through examples

This section is based on some of the examples provided with HIT and illustrate the use of HIT for
typical identification experiments. The most important variables influencing the behavior of HIT
are also described.

4.1 Simple PWA regression

In this experiment we will reconstruct a PWA with 3 modes and a 2D regressor set. We first
initialize the HIT and MPT toolboxes. This operation is necessary for setting the global variables
idpar, plotpar controlling the behavior of HIT and the global variable mptOptions used by
MPT. All these variables are structure arrays. Initializations are done by typing:

hit init

In order to make the global variables visible in the workspace, type

global idpar plotpar

Next, we define the PWA map used for generating the data. To this purpose:

� we define the PVs and collect them in a cell array:

th 1 =[4 2 3];
th 2 = [−6 6 −5];
th 3=[4 −2 −2];
Theta={th 1,th 2,th 3};

� we set the regressor set X as the square [−1, 1] × [−1, 1]:

R=[1 0;−1 0;0 1; 0 −1];
r=[1;1;1;1];
Regressor set=polytope(R,r);

Note the use of the command polytope of MPT for defining a polytope object. Try:

help polytope

for more details.

� define a cake-like partition of X into 3 regions, stored as elements of a polytope array :

6

Regions=[polytope([0 −1;−1 −1/sqrt(3);R],[0;0;r]),...
polytope([1 1/sqrt(3);1 −1/sqrt(3);R],[0; 0;r]),...
polytope([−1 1/sqrt(3);0 1;R],[0;0;r])];

Now, we generate 60 noisy samples of the PWA map:

Nid=60;
% Sample the regressor set
Xid=hit sample rectangles({{[−1,1],[−1,1],Nid}},Regressor set);
% Create the corresponding (noisy) output samples
yid=[];
for k=1:Nid

point=[Xid(k,1) Xid(k,2)];
[val,ind]=hit pwa(Theta,Regions,point);
yid(k)=val+0.01*randn(1); % add noise to the output

end
yid=yid(:);

The previous lines use the HIT functions hit sample rectangles and hit pwa for generating
randomly regressors in a rectangular domain and for evaluating the PWA map on the regressors,
respectively. Regressors are stored as rows of the matrix Xid and output samples as elements of
the column vector yid.

Since the PWA map has a 2D domain, it can be visualized. For plotting the map and the data
points try the following lines:

% x grid, y grid: grids for plotting the pwa function
x grid=−1:.05:1;
y grid=−1:.05:1;
% plot the mode hyperplanes and the data in figure 2
minz=hit pwa plot2d(Theta,Regions,[],x grid,y grid,2,plotpar.color surface);
hold on
for i=1:Nid

hp(i) = plot3(Xid(i,1),Xid(i,2),yid(i),'ob');
hold on
set(hp(i), 'MarkerSize', 8,'LineWidth',1.5);

end
axis square
grid on
ylabel('{x 2}','FontSize',16)
xlabel('{x 1}','FontSize',16)
zlabel('{y}','FontSize',16)
set(gca,'FontSize',13)
% plot the mode regions
hit plot regions3d(Regions,minz,plotpar.color regions);
% save the axis for later purposes
axis saved=axis;
title('True PWA model');
hold off

In the previous lines, the function hit pwa plot2d plots the map on a grid. The color of the
map is stored in plotpar.color surface that has been initialized in hit init. In general,
the fields of plotpar (PLOTting PARameters) define all variables influencing the plots in HIT.

7

Note also that plotted regions are numbered in order to allow the user to easily recognize which is
the the first, second and third mode (as declared in Theta and Regions).

The variable minz stores the minimum of the gridded map and is used in hit plot regions3d
for plotting the regions below the map. The colors of the regions are stored in the matrix
plotpar.color regions that has been initialized in hit init.

Now, we reconstruct the PWA map from the data. All parameters influencing the PWA regres-
sion algorithm are stored in fields of the structure idpar (IDentification PARameters) that has
been initialized in hit init. Comments in hit init.m describe all fields of idpar. The only
fields that must be supplied by the user are the size of local datasets c, the regressor set and the
number of modes s (because, by default, HIT uses Kmeans as a clustering algorithm and Kmeans
is a supervised method).

% number of modes
idpar.s=3;
% size of Local Datasets
idpar.c=6;
% regressor set
idpar.Regressor set=Regressor set;

Since few data points are available, we can choose MRLP (Multicategory Robust Linear Pro-
gramming) [1] as a pattern recognition algorithm. MRLP is the most precise algorithm for recon-
structing the regions among those in HIT, but also the most computationally expensive.

idpar.patt rec algo='mrlp';

The reconstruction of the PWA map is done by invoking hit regression

[idmodes,F,xi,LDs,inliers]=hit regression(Xid,yid);

During its running, hit regression displays various messages describing the operations that
are performed at each step. Usually, error messages provide also hints about how to circumvent
the problem. hit regression plots also the first 2 or 3 coordinates of the clustered ξ-points, by
default.

Let us have a look at the outputs of hit regression. The structure array idmodes (IDen-
tified MODES) describes the reconstructed PWA map and stores also measures related to the
correctness of clustering and pattern recognition. The parameters describing the PWA map can be
displayed by typing:

% Display the number of modes found after identification. It can be different
% from idpar.s
idmodes.s
% Display the PVs stored in the cell array idmodes.par
idmodes.par{:}
% Display the covariances of PVs, stored in the cell array idmodes.cov
idmodes.cov{:}
% Display the regions stored in the polytope array idmodes.regions
idmodes.regions(1); idmodes.regions(2); idmodes.regions(3)

8

Note that the identified modes might be a permutation of the original ones. As an example,
idmodes.par{1} it is not necessarily an estimate of Theta{1} but might be an estimate of
Theta{2} or Theta{3}. This is due to the fact that the regression algorithm has no knowledge
about how modes have been ordered in the model used for generating the data.

The remaining outputs describe the mode data sets (structure F) the ξ-points (matrix xi)
the LDs (structure LDs) and the inliers (vector inliers). For a precise description of all these
variables, just type help hit regression.

For plotting the identified model, type

% plot the model in figure 3
hit plot idmodes(Xid, yid,inliers,idmodes,3);
hold on
% put the same axis as in the plot of the original model
axis(axis saved)
title('Identified PWA model');
hold off

Since regions appearing in the plot are numbered, a comparison with the plot of the map
generating the data help reconstruct the modes permutation.

We conclude the example by commenting some facilities provided by HIT for validating the
identified model.

We first check the the global Mean Squared Error (MSE) and the MSE of each mode. These
quantities, that helps in isolating modes that have been badly identified, can be computed by
typing:

[mse,mse mode]=hit mse(Xid,yid,idmodes);

The structure array idmodes.pattern rec valid contains measures of the quality of pat-
tern recognition. Some of its entries depend on the pattern recognition algorithm used. However,
all methods produce the field idmodes.pattern rec valid.correctness that is a matrix
whose ij-entry, i > j, measures the correctness in separating regressors of the i-th mode from re-
gressors of the j-th mode. More precisely, idmodes.pattern rec valid.correctness(i,j)
is the percentage of the points in F̄i ∪ F̄j correctly separated. A correctness of 100 means perfect
separation.

Similarly, idmodes.pattern rec valid stores algorithm-dependent measures of the clus-
tering quality. In our experiment we used Kmeans, that initializes randomly the cluster centers.
For this reason, HIT runs Kmeans a number of times, specified by

idpar.clustalgo.kmeans.repetitions

and keep only the best clustering result, i.e. the results in the run that gave the minimal clustering
cost. The field idmodes.clust valid.costs stores the cost at each run. It is wise to check
if Kmeans converged to the minimal cost in many different runs, otherwise, either clusters are not
well-separated in the ξ-space (in this case it is recommended to increase idpar.c) or Kmeans
started from a bad initialization in all runs. In the latter case, a remedy is to increase the number
of runs.

9

4.2 Identification of a PWARX model

We consider the problem of identifying a PWARX model with scalar inputs/outputs, orders na =
nb = 1 and 3 modes. As in the previous section, we first initialize HIT and MPT, define PVs and
regions of the PWARX model and collect the data.

% initialize the HIT and MPT toolboxes
hit init
% define idpar and plotpar as global to make them visible
% in the workspace
global idpar plotpar

%
% Definition of the PWARX model
%

% Specify the PVs. Note that two of them are equal
th 1 =[0.6 0.3 0];
th 2 = [−.6 −0.3 0];
th 3=[0.6 0.3 0];
% store the PVs in the cell array Theta
Theta={th 1,th 2,th 3};
% Define the regressor set equal to the square [−2,2]*[−2 2]
Regressor set=polytope([1 0;−1 0;0 1; 0 −1],[2;2;2;2]);
% Regions: polytope array specifying the true mode regions
Regions=[polytope([0.2 1],[−.8]),...

polytope([−0.2 1; −0.2 −1],[.8; .8]), ...
polytope([0.2 −1],[−.8])];

% intersect Regions with the regressor set
for i=1:3

Regions(i)=Regions(i)&Regressor set;
end

%
% Generate input/output samples
%

% N: number of data
N=60;
% standard deviation and variance of the noise corrupting
% the output samples
sigma sq=0.01;
sigma=sqrt(sigma sq);
% create N samples of the scalar input u(k) unifomly distributed in [−2,2]
u=hit sample intervals({{[−2,2],N}}, polytope([1;−1],[2; 2]));
% initialize the vector of output samples
% using y(1)=0.5 as initial state
y=[0.5 zeros(1,N)];
% simulate the PWARX system to obtain the output samples
for k=1:N

point=[y(k) u(k)]';
[val,ind]=hit pwa(Theta,Regions,point);
y(k+1)=val+sigma*randn(1); % add noise to the data

end
% Build regressors and outputs for the PWARX model of orders n a=1, n b=1

10

% Xid(i,:) is the i−th regressors
% yid(i) is the i−th output sample
[Xid,yid]=hit pwarx format data(u,y,1,1);

A few comments on the new commands appearing in the previous lines of code:

� The polyhedra stored in Regions at the beginning of the code are unbounded. To make
them bounded, they are intersected with the regressor set through the command

Regions(i)=Regions(i)&Regressor set

that uses the & operator of MPT;

� The command hit sample intervals randomly samples the interval [-2 ,2];

� hit pwarx format data takes inputs, outputs and orders of the PWARX model and create
the regressors and outputs as in (4).

Now, we plot modes and data in figure 2:

minz=hit pwa plot2d(Theta,Regions,[],x grid,y grid,2,plotpar.color surface);
hold on
for i=1:Nid

hp(i) = plot3(Xid(i,1),Xid(i,2),yid(i),'ob');
hold on
set(hp(i), 'MarkerSize', 8,'LineWidth',1.5);

end
axis square
grid on
hold on
ylabel('{u(k−1)}','FontSize',16)
xlabel('{y(k−1)}','FontSize',16)
zlabel('{y(k)}','FontSize',16)
set(gca,'FontSize',13)
% plot the mode regions
hit plot regions3d(Regions,minz,plotpar.color regions);
% save the axis
axis saved=axis;
title('True PWA model');
hold off

The identification is done exactly as in the example of Section 4.1, the only difference being that
we use SVC (Support Vector Classification) [10] for reconstructing the regions. SVC is faster but
less accurate than MRLP. Most importantly, if the regressor set has dimension strictly greater than
one, it is not guaranteed that the union of regions will cover the regressor set, i.e. some subregions
of X not associated to any mode might arise (see [4] for more details).

%
% Setup of the fields of idpar.
%

% number of modes

11

idpar.s=3;
% size of Local Datasets
idpar.c=6;
% regressor set
idpar.Regressor set=Regressor set;
% pattern recognition algorithm
idpar.patt rec algo='svc';

%
% Identify the PWARX model
%

[idmodes,F,xi,LDs,inliers]=hit regression(Xid,yid);

%
% Plot the identified PWARX model
%

% Setup of the fields of plotpar
plotpar.x grid=x grid;
plotpar.x grid=y grid;

% plot the model in figure 3
hit plot idmodes(Xid, yid,inliers,idmodes,3);
hold on
% use the same axis as in the plot of the original model
axis(axis saved)
title('Identified PWARX model');
ylabel('{u(k−1)}','FontSize',16)
xlabel('{y(k−1)}','FontSize',16)
zlabel('{y(k)}','FontSize',16)
set(gca,'FontSize',13)
hold off

As for the validation of the identified model, one can follow the guidelines provided in Section 4.1.
In addition, one can check if SVC has left some “holes” by typing

H=hit holes(idmodes,idpar.Regressor set)

where H is a polytope array partitioning the hole. An empty polytope means that no hole is present.

4.3 Identification with a large number of data points

The next example shows how to use HIT for reconstructing a PWARX model (with scalar input-
s/outputs, orders na = 0, nb = 1 and 5 modes) from 1000 data points. In particular, we will show
how to speed up the identification procedure. Again, we initialize HIT and MPT, define PVs and
regions of the PWARX model, generate the data and plot the results.

hit init
global idpar plotpar

%

12

% Generate input and output samples
%

% N: number of datapoints
N=1000;
% specify the PVs. Note that two modes have a continuous junction.
th 1 =[1 .2];
th 2 = [−1 2] ;
th 3 = [1 −1];
th 4 = [0 2];
th 5 = [2 −10];
Theta={th 1,th 2,th 3,th 4,th 5};
% Define the regressor set equal to the interval [−4,8]
Regressor set=polytope([1 ;−1],[8;4]);
% Regions: polyhedra array specifying the true regions.
% They are the intervals [−inf,−1], [−1,2], [2,4], [4,6], [6,inf]
Regions=[polytope([1],[−1]),polytope([1;−1],[2; 1]);...

polytope([−1;1],[−2;4]);polytope([−1;1],[−4;6]);...
polytope([−1],[−6])];

% standard deviation and variance of the noise corrupting
% the output samples
sigma sq=0.01;
sigma=sqrt(sigma sq);
% create N samples of the scalar input u(k) unifomly distributed in Regressor set
V=extreme(Regressor set);
u=hit sample intervals({{V,N}}, Regressor set);
% initialize the vector of output samples with zeros.
% This means that, for computing y(2), the 'initial state' y(1)=0 is used
y=zeros(1,N+1);
% simulate the PWA system for obtaining the output samples
for k=1:N

point=[u(k)];
y(k+1)=hit pwa(Theta,Regions,point)+sigma*randn(1); % add noise to the data

end
% Build the vectors of datapoints that will be used for identification
na=0;
nb=1;
[Xid,yid]=hit pwarx format data(u,y,na,nb);

% plot the true model and the data in figure 1
hit pwa plot1d(Theta,Regions,Regressor set,1,'u(k−1)','y(k)');
hold on
plot(Xid(:,1),yid,'+','MarkerSize',8);
% save the axis
axis saved=axis;
title('True model and data points')
hold off

Note that we used the command extreme of MPT for finding the starting and ending point of the
regressor set.

For the reconstruction of the regions, MRLP/SVC would be too slow unless one has access to
professional LP/QP solvers like CPLEX (we highlight that MPT provides an easy-to-use interface
to some commercial solvers). Indeed, MRLP/SVC are based on LP/QP problems whose number of
variables scales linearly with the number of data points. Therefore we resort to the fastest pattern

13

recognition algorithm provided with HIT: Proximal SVC (PSVC) [7]. PSVC is not optimization-
based, but it might be also less accurate than MRLP or SVC. Moreover, as for SVC, if the regressor
set has dimension strictly greater than one, it is not guaranteed that the union of regions will cover
the regressor set.

Be aware that the execution of the next lines of code might take a couple of minutes, depending
on the speed of your machine.

% number of modes
idpar.s=5;
% size of Local Datasetsidpar.c=8;
% use PSVC as pattern recognition algorithm
idpar.patt rec algo='psvc';
% Define the regressor set
idpar.Regressor set=Regressor set;
% Define the regressor set *for simulation* equal to the interval [−10,10]
idpar.Regressor set sim=polytope([1 ;−1],[10;10]);

%
% Identify the PWARX model
%

[idmodes,F,xi,LDs,inliers]=hit regression(Xid,yid);

%
% Plot the identified PWARX model
%

% Setup of the fields of plotpar
plotpar.x grid=x grid;
plotpar.x grid=y grid;

% plot the model in figure 3
hit plot idmodes(Xid, yid,inliers,idmodes,3);
hold on
% use the same axis as in the plot of the original model
axis(axis saved)
title('Identified PWARX model');
ylabel('{u(k−1)}','FontSize',16)
xlabel('{y(k−1)}','FontSize',16)
zlabel('{y(k)}','FontSize',16)
set(gca,'FontSize',13)
hold off

In the previous lines, we used a regression set for simulation specified by the optional field
idpar.Regressor set sim. This option is relevant for the following reason: if the identified
model must be used (e.g. simulated) on a polytope X̄ that is bigger than X , it is convenient to let
hit regression intersect the hyperplanes separating the regions with X̄ . In this case, regions
for simulation {X̄i}

s
i=1 are computed and stored in the field idmodes.regions sim.

This procedure has a drawback: if the dimension of regressors is strictly greater than one, the
regions for simulation might not cover X̄ , even if they cover X . In other words, some holes may
appear due to the fact that X ⊂ X̄ . However, the presence of holes can be checked with the
command hit holes as shown in Section 4.2.

14

4.4 PWA approximation of a nonlinear function

We discuss now how to approximate a sinusoidal function with a PWA map. We initialize HIT and
MPT, sample the function and plot the data.

% initialize the HIT and MPT toolboxes
hit init
% define idpar and plotpar as global to make them visible
% in the workspace
global idpar plotpar

%
% Sample the function

% N: number of generated datapoints
N=60 ;
% create a grid in the function domain
Xid=[−pi:2*pi/N:pi];
% function samples
yid=sin(Xid);
% Regressor set: interval [−pi,pi]
idpar.Regressor set=polytope([1 ;−1],[pi;pi]);
% plot the data in figure 1
figure(1);clf;
hold on
plot(Xid,yid,'+','MarkerSize',8);
hold on
baseline=axis;
title('Function samples')
hold off

For computing the approximation, we identify a PWA map with 5 modes by using the samples.
Assume that we want to obtain a continuous PWA approximation. This can be achieved by setting
idpar.continuity='c'.

% Number of modes of the PWA approximator
idpar.s=5;
% Size of Local Datasets
idpar.c=8;
% pattern recognition algorithm
idpar.patt rec algo='svc';
% we want a continuous PWA approximation
idpar.continuity='c';

%
% PWA regression
%

% put Xid in column format
Xid=Xid(:);
[idmodes,F,xi,LDs,inliers]=hit regression(Xid,yid);

%
% If the regressor set is 1− or 2−dimensional

15

% the PWA model can be plotted
%

% avoid plotting datapoints
plotpar.datapoints yn='N';
hit plot idmodes(Xid, yid,inliers,idmodes,2);

% plot the original function on the same figure
figure(2);
hold on
plot(Xid,yid,'r');
title('True function and PWA approximation');
hold off

In the previous lines, we prevented hit plot idmodes from plotting the data by setting

plotpar.datapoints yn='N'

4.5 Selection of c and s through cross-validation

When one is uncertain about the proper values of the parameters c and s, a possibility is to tune
them with cross-validation. We first generate identification and validation data points by sampling
a PWA map with 5 modes:

hit init

% define idpar and plotpar as global to make them visible
% in the workspace
global idpar plotpar

%
% Generate regression and validation datapoints
%

% N: number of datapoints
N=150 ;
% Nv: number of validation datapoints
Nv=N/2 ;

% specify the PVs:
th 1 =[1 .2];
th 2 = [−1 2] ;
th 3 = [1 .2];
th 4 = [3 −10];
th 5 = [−2 15];

% store the PVs in the cell array Theta
Theta={th 1,th 2,th 3,th 4,th 5};

% Regions: polyhedra array specifying the true regions.
% They are the intervals [−inf,−1], [−1,2], [2,4], [4,6], [6,inf]
Regions=[polytope([1],[−1]),polytope([1;−1],[2; 1]);...

polytope([−1;1],[−2;4]);polytope([−1;1],[−4;6]);...

16

polytope([−1],[−6])];

% Define the regressor set equal to the interval [−4,8]
idpar.Regressor set=polytope([1 ;−1],[8;4]);

% standard deviation and variance of the noise corrupting
% the output samples
sigma sq=0.1;
sigma=sqrt(sigma sq);

% create input samples u(k) unifomly distributed in Regressor set
V=extreme(idpar.Regressor set);
u=hit sample intervals({{V,N}}, idpar.Regressor set);

% create input samples for cross−validation
uv=hit sample intervals({{V,Nv}}, idpar.Regressor set);

% create placeholders for output samples
y=zeros(1,N);
yv=zeros(1,Nv);

% sample the PWA map to obtain output samples
for k=1:N

point=[u(k)];
y(k)=hit pwa(Theta,Regions,point)+sigma*randn(1);

end

% sample the PWA map to obtain output samples for cross−validation
for k=1:Nv

point=[uv(k)];
yv1(k)=hit pwa(Theta,Regions,point)+sigma*randn(1);

end

% Regressors and outputs for identification
Xid=u(:);
yid=y(:);

% Regressors and outputs for cross−validation
Xv=uv(:);
yv=yv1(:);

% plot the true model and the data in figure 1
hit pwa plot1d(Theta,Regions,idpar.Regressor set,1,'x(k)','y(k)');
hold on
plot(Xid(:,1),yid,'+','MarkerSize',8);
hold on
baseline=axis;
title('True model and datapoints')
hold off

% plot the true model and the validation data in figure 2
hit pwa plot1d(Theta,Regions,idpar.Regressor set,2,'x(k)','y(k)');
hold on
plot(Xv(:,1),yv,'+','MarkerSize',8);
hold on
baseline=axis;

17

title('True model and validation datapoints')
hold off

Next, we store the candidate values of c and s in two vectors and call hit estimate cs that
identify a model for each combination of c and s and select the values minimizing the MSE on
validation data. In order to speed up the procedure, we prevent HIT from plotting the classified
ξ-points by setting

plotpar.plot class xi points yn='N';

and choose the fastest pattern recognition algorithm (PSVC):

c test=[6 8];
s test=[4 5 6];

idpar.patt rec algo='psvc';
plotpar.plot class xi points yn='N';
[best s,best c,mse m]=hit estimate cs(Xid,yid,Xv,yv,c test,s test);

We conclude by re-identifying the model with the best c and s. To achieve better results we
use SVC for reconstructing the regions.

% PWA regression with the best Local Dataset size and the best number of
% modes
idpar.c=best c;
idpar.s=best s;
% Plot classified xi−points during the running of hit regression
plotpar.plot class xi points yn='y';
% Choose SVC as pattern recognition algorithm
idpar.patt rec algo='svc';
[idmodes,F,xi,LDs,inliers]=hit regression(Xid,yid);

% Plot the identified model in figure 3
hit plot idmodes(Xid, yid,inliers,idmodes,3);
xlabel('x(k)')
ylabel('y(k)')

5 Global variables used in HIT

As seen in the previous examples, the behavior of hit regression depends on the field structures
idpar and plotpar. In this Section, we discuss just the fields of idpar. The fields of plotpar
are self-explanatory and can be easily learned from the comments in hit init.m. For field values
that are strings, we highlight that HIT is not case-sensitive.

The following variables

idpar.s
idpar.c
idpar.Regressor set
idpar.Regressor set sim

18

have been already discussed in Section 4. Here, we just mention the fact that if idpar.Regressor set
is not supplied by the user, it is automatically set as the smallest hyper-rectangle containing all
regressors.

The user selects if a continuous or discontinuous PWA/PWARX model must be reconstructed
through the variable

idpar.continuity= 'C' | 'D'

We stress that clustering-based procedures are tailored to discontinuous models and continuity is
just imposed during the final estimation of the PVs.

The post-processing phase discussed in Section 3 is activated according to the value of the field

idpar.mix detect= 'Y' | 'N'

The factor α ≥ 1, used for discarding clusters, is stored in the field

idpar.discard threshold factor

In a noisy setting, it is wise to set α equal to (at least) 2 or 3. Indeed, as a rule of thumb, if data
are noisy, one needs at least 2 or 3 data points for each parameter to be estimated.

HIT can offer an option to stop right after the clustering step. This is useful when many clusters
have been found (through Single-linkage clustering, for instance) and MRLP has been selected for
finding the regions. In this case, it might take a very long time to get the MRLP solution and one
may want to skip the pattern-recognition phase. HIT offers this option according to the value of
the field

idpar.YNquestions='Y' | 'N'

5.1 Clustering algorithms

Two clustering algorithms are included in HIT: weighted Kmeans and single-linkage. The desired
algorithm is chosen according to the field

idpar.clustalgo.name= 'KMEANS' | 'SL'

Moreover, each algorithm clusters ξ-points that are either LPVs or FVs. To choose the nature
of ξ-points, one has to set the field

idpar.what to clust= 'LPVS' | 'FVS'

Finally, one should note that two or more LDs can contain the same data points thus providing
the same ξ-point. Duplicates of ξ-points are removed in clustering according to the field

idpar.clustalgo.remove duplicates='Y' | 'N'

This is useful in single-linkage for discarding clusters containing ξ-points that are associated to less
than min{α(n + 1), c} distinct data points.

19

5.1.1 Kmeans

The number of times Kmeans is run with different initializations, is stored in

idpar.clustalgo.kmeans.repetitions

For initializing cluster centers and update them during the execution of Kmeans, one can use
either the matrix-valued or the scalar-valued measures of quality associated to ξ-points. In general,
matrix-valued measures produce better results at the price of making Kmeans slower. The quality
measure to be used is set through the variables

idpar.clustalgo.kmeans.init centers= 'COVARIANCES' | 'SCALARS'
idpar.clustalgo.centers= 'COVARIANCES' | 'SCALARS'

5.1.2 Single-linkage

Single-linkage clustering does not need idpar.s to be specified and estimates automatically the
number of clusters. However, the user must supply the expected minimal distance between clusters
[2] and this can be done by setting the field

idpar.clustalgo.sl.guess min dist

Single-linkage is a hierarchical method that aggregates clusters in an iterative way. HIT can plot
how clusters change at each step of the process, according to the field

idpar.clustalgo.sl.plot steps= 'Y' | 'N'

More precisely, HIT plots the first 2 or 3 components of the clustered ξ-points. The number of the
figure where the plot appears is stored into the variable

idpar.clustalgo.sl.plot steps.fig

5.2 Pattern-recognition algorithms

As discussed in Section 4, HIT offers three pattern-recognition algorithms for reconstructing the
regions: MRLP, SVC and PSVC. We summarize here the pros and cons of each one:

� MRLP is the most precise algorithm but also the slowest one. This is due to the fact that
MRLP tries to find the boundaries between all regions at the same time by solving a single
LP. This guarantees that the regions are a partition of the regressor set, i.e. no hole will be
left in X . As a rule of thumb, if the number of data points is bigger than 200 and the number
of modes is bigger than 3, we recommend to use it only if a fast LP solver (like CPLEX) can
be used.

� SVC is less precise than MRLP, in the sense that the reconstructed regions might leave holes
in X when the dimension of X is strictly greater than one [4]. This issue is due to the
fact that SVC finds recursively linear boundaries between pairs of regions by solving QPs.

20

However, pairwise separation results in QPs with a reduced number of unknown, compared
to the number of unknowns in the LP produced by MRLP. As a result, usually SVC is
computationally more efficient than MRLP.

� PSVC does not involve any optimization and is extremely efficient from the computational
point of view. However, it is less precise than SVC and might leave holes in X when the
dimension of X is strictly greater than one.

The pattern recognition algorithm is selected by setting

idpar.patt rec algo: 'MRLP' | 'SVC' | 'PSVC'

5.3 Solvers for LP and QP

HIT uses functions of the MPT toolbox for solving LPs and QPs. Generally, one does not need to
change the default settings because MPT checks automatically the solvers installed on a machine
and uses the most convenient one. The remainder of this Section will explain how force MPT to
use a specific solver.

The LP solver used by MRLP is selected through the variable:

idpar.LPsolver=0 | 1 | 2 | 3,..

where the meaning of the integers can be visualized by typing help mpt solvelp. Analogously,
the LP solver used for reducing constraints defining polytopes (see the manual of MPT for an
explanation of this operation), is specified through the field

idpar.LPsolver cnstr reduction=0 | 1 | 2 | 3,..

HIT invokes QP solvers for solving SVC problems and for finding continuous PWA/PWARX
models. The QP solver can be chosen by setting

idpar.QPsolver=0 | 1 | 2

where the meaning of the integers can be visualized by typing help mpt solveqp

5.4 Experimental features

For estimating LPVs one may want to use weighted Least Squares. This can be done by specifying
the weights in the vector

idpar.Weight primal

If Weight primal is empty, it is filled with ones, and the weights play no role.

Acknowledgments

The development of HIT has been supported by the EU projects HYCON (FP6-IST-511368) and
HYGEIA (NEST-4995).

21

References

[1] E.J. Bredensteiner and K.P. Bennett. Multicategory classification by support vector machines.
Computational Optimizations and Applications, 12(1-3):53–79, Jan 1999.

[2] G. Ferrari-Trecate and M. Muselli. Single-linkage clustering for optimal classification in piece-
wise affine regression. In S. Engell, H. Gueguen, and J. Zaytoon, editors, IFAC Conference on
the Analysis and Design of Hybrid Systems (ADHS 03). Saint-Malo, France, 16-18 june 2003.

[3] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. Identification of piecewise affine
and hybrid systems. In Proc. of the 2001 American Control Conference, volume 5, pages
3521–3526. Arlington, VA, IEEE, Piscataway, NJ, USA, 25-27 june 2001.

[4] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique for the
identification of piecewise affine and hybrid systems. Automatica, 39(2):205–217, Feb 2003.

[5] G. Ferrari-Trecate and M. Schinkel. Conditions of optimal classification for piecewise affine
regression. In Proc. 6th Int. Workshop on Hybrid Systems: Computation and Control, volume
2623, pages 188–202. Prague, Czech, Springer-Verlag, Berlin Heidelberg 2003, 3-5 April 2003.

[6] B. Fritzke. Some competitive learning methods. Technical report, Institute for Neural Com-
putation. Ruhr-Universit at Bochum, 1997.

[7] G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In F. Provost and
R. Srikant, editors, Proceedings KDD-2001: Knowledge Discovery and Data Mining, August
26-29, 2001, San Francisco, CA, pages 77–86, New York, 2001. Asscociation for Computing
Machinery. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-02.ps.

[8] A. Juloski, M. Heemels, G. Ferrari-Trecate, R. Vidal, S. Paoletti, and H. Niessen. Comparison
of four procedures for identification of hybrid systems. In M. Morari and L. Thiele, editors,
Proc. 8th Int. Workshop on Hybrid Systems: Computation and Control, volume 3414, pages
354–369. Zurich, Switzerland, Springer-Verlag, Berlin Heidelberg 2005, 9 - 11 March 2005.

[9] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric Toolbox (MPT), 2004.

[10] V. Vapnik. Statistical Learning Theory. John Wiley, NY, 1998.

22

